

Managing social-ecological systems under uncertainty: a multidisciplinary approach

Ana Nuno, PhD

University of Exeter, UK

Uncertainty

1 THOUGHT I WAS INTERESTED IN UNCERTAINTY BUT NOW I'M NOT SO SURE TOSHid

cartoonsbyjosh.com

Milner-Gulland et al. (2010) Biology Letters

Study-area: Serengeti, Tanzania

I – Wildlife monitoring under uncertainty

Nuno A, Milner-Gulland EJ, Bunnefeld N. (in press) Detecting abundance trends under uncertainty: the influence of budget, observation error and environmental change. *Animal Conservation*

Nuno A, Bunnefeld N, Milner-Gulland EJ. (2013) Matching observations and reality: using simulation models to improve monitoring under uncertainty in the Serengeti. *Journal of Applied Ecology* 50(2): 488–498.

Questions

1. How do different monitoring budgets translate into data quality (accuracy and precision)?

2. How are different types of error affected by budgetary, observational and ecological conditions?

Types of error

-**Type I errors (\alpha):** rejecting the null hypothesis when it is true

-**Type II errors (β):** failing to detect a difference that is present

- **Shape errors:** misclassifying a trend as linear when it is actually non-linear or vice-versa

1. Operating biological model

Wildebeest

Year

2. Observation model

Types of factors

Wildebeest monitoring:

Population characteristics	
	Population size
	Proportion of juveniles (%)
	Aggregation
	Spatial autocorrelation
Sampling characteristics	
	Distance between transects (km)
	Time between photos (seconds)
Flight characteristics	
-	Mean flight altitude (m)
C	CV (coefficient of variation) error altitude
	Mean flight speed (km/sec)
	CV (coefficient of variation) error speed
Observer effects	
	Minimum error counting juveniles (%)
Number of animals in a photo for which 50% juveniles are missed	
	Mean error counting adults (%)
CV (coef	ficient of variation) error counting adults

Results: monitoring wildebeest

The likely effect of budget on data quality

Nuno, Bunnefeld & Milner-Gulland (2013) Journal of Applied Ecology

3. Assessment model & Analysis

Results

Type II error 0.5 0.4 0.3 0.2 0.1 ▲Impala No obs. error • Wildebeest Low obs. error High obs. error ----0.0 1 2 3 5 4

Frequency (years between surveys)

Results

- To make robust management decisions, we should account for multiple types and sources of uncertainty
- Need to integrate ecological modelling, threat scenarios and costs into decision-theoretic approaches to NRM and conservation

• Our uncertainty mitigation efforts must be focused on the kinds of information which are most valuable

II – Assessing "sensitive" resource use

Nuno A, St John F. (in press) How to ask sensitive questions in conservation: A review of specialised questioning techniques. *Biological Conservation*.

Nuno A, Bunnefeld N, Naiman L, Milner-Gulland EJ. (2013) A novel approach to assessing the prevalence and drivers of illegal bushmeat hunting in the Serengeti. *Conservation Biology*, 27(6): 1355-1365.

Illegal bushmeat hunting

Illegal hunting in the Serengeti

How many? 8 to 57% hhs

Who poaches?

Ethnic group Household size Household migration Household employment Season Hunting as source of cash District Distance from village to protected areas Access to alternative sources of protein and/or income

Examples

"715 individuals were asked if they were involved in hunting. Many [84%] <u>chose not to answer</u>" (Campbell et al. 2001)

"<u>deep reluctance</u> among the respondents to talk about bushmeat hunting" (Nyahongo et al. 2009)

"collected data needs to be treated cautiously, because we may have been lacking important information due to <u>fear from</u> <u>respondents</u>" (Mfunda & Røskaft 2010)

How to estimate illegal resource use?

- Law-enforcement records
- Indirect observation
- Forensics
- Direct observation

- Self-reporting
- Direct questioning
- RRT
- Modelling

Gavin et al. (2010) Cons. Bio.

Specialized questioning techniques

- nominative technique
- bean method

- randomized response technique
- grouped answer method

- crosswise, triangular, diagonal and hidden sensitivity models
- surveys with negative questions

Unmatched-count technique

Treatment

Dalton et al. (1994) Person. Psychol.

Main data collection

15 villages, Western Serengeti 1192 household interviews

Questionnaires

- A. Individual characteristics
- **B.** Household characteristics
- C. Household participation in hunting
- D. Opinion about survey technique

Results I

Non-response rate: <3%

Estimated hunting households (%):

Results II

Model coefficients (± S.E.):

Conclusions I

- poaching remains widespread in the Serengeti
- households hunt both for food and cash all year round
- current alternative sources of income may not be sufficiently attractive to compete with the opportunities provided by hunting

Conclusions II

A new tool for the conservationists' kit?

- Potential for wider application
- Sample size requirements
- Disentangle survey processes from actual effects of interest

III – Conservation implementation under uncertainty

Some questions

 How to manage conflict over natural resource management and conservation?

 How to "predict" resource user behaviour in face of changing conditions?

Interviews & socio-economic surveys

- 25 "stakeholders" (such as retired seamen)
- 561 households
- 174 high school students
- 117 cruise ship tourists
- 87 stay-over tourists
- 10 restaurant managers (ongoing)

Other areas of research

 Combining (and comparing) social and ecological information into integrated modelling frameworks for decision support

• Social monitoring & linking (and predicting) ecological outcomes with robust "social indicators" (e.g. social networks, behaviour, attitudes?)

• Actual (and perceived) value of information for decisionmaking

Acknowledgements & Questions

SOCIETY

Email: a.m.g.nuno@exeter.ac.uk Twitter: @Ana__Nuno Website: ananuno.net