Matching observations and reality: monitoring under uncertainty in the Serengeti

Ana Nuno^{*}, Nils Bunnefeld, E.J. Milner-Gulland Department of Life Sciences, Imperial College London, UK * ana.nuno08@imperial.ac.uk

Introduction

Conservation success requires **effective and efficient monitoring** strategies. Monitoring is, however, often inadequate. Survey design and data quality are common problems affecting monitoring schemes worldwide [1].

Monitoring may be affected by multiple **uncertainties** [2]. For example, **aerial surveys** are often reported to produce underestimates but quantifying biases and prioritizing errors for their minimization is difficult given our limited ability to experiment on the real world.

Using selected antelopes in the Serengeti, we used simulation modelling to investigate: how is monitoring **accuracy** (how close a measure is to the true value) and **precision** (how close repeated measures are to each other) affected by **observation error**?

Parameters

Parameters (wildebeest monitoring model)	Range						
Population characteristics							
Population size Proportion of juveniles (%) Aggregation Spatial autocorrelation	200 000 - 2 000 000 5 - 35 0.01 - 2 0.1 - 0.9						
Sampling characteristics							
Distance between transects (km) Time between photos (seconds)	1-18 5-120						
Flight characteristics							
Mean flight altitude (m) CV (coefficient of variation) error altitude Mean flight speed (km/sec) CV (coefficient of variation) error speed	Fixed (1200) 0 - 0.3 Fixed (0.06) 0 - 0.3						
Observer effects							
Minimum error counting juveniles (%) Number of animals in a photo for which 50% juveniles are missed Mean error counting adults (%) CV (coefficient of variation) error counting adults	0 - 20 20 - 50 0 - 20 0 - 0.5						

1000 sets of parameter values were generated from uniform distributions (50 replicates each set). Generalised linear models were fitted to scaled variables to explain changes in precision and accuracy.

Sources of uncertainty

Process (sampling) error: results from the spatial distribution or other characteristics of the population

Image: state
Image: state
Image:

Observation error:

results from uncertainties in the

way in which the population is

observed (e.g. undercounting)

Results

Standardized regression coefficients (β) (only parameters with $\beta \ge 0.3$ are shown; *** = P<0.001)						
Model outputs	Aggregation	Spatial autocorrelation	Distance between transects	Mean error counting adults	Population size	
Survey CV	-0.42***	-0.32***	0.45***			
Bias				0.40***	0.30***	

Distribution of precision and bias for different monitoring budget scenarios High or low budget scenarios assume parameters at their best or worst values, respectively. For example, the low budget scenario assumes conducting only a few

Analysis

B Observed ___ Estimated state abundance

A) Spatial-explicit model B) Observation model

Incorporates the effects of population characteristics:

- population size
- proportion of juveniles
- aggregation
- spatial autocorrelation

Incorporates the effects of:

- sampling effort - undercounting
- observational procedures

1. Assessment of survey precision (coefficient of variation; CV) and accuracy (bias)

C) Analysis

2. Sensitivity analysis to rank drivers of change in precision and accuracy

Literature

- [1] Legg & Nagy (2006) Why most conservation monitoring is, but need not be, a waste of time. *Journal of Environmental* Management 78: 194–199
- [2] Harwood & Stokes (2003) Coping with uncertainty in ecological advice: lessons from fisheries. *Trends in Ecology & Evolution* 18: 617-622

Conclusions

• Importance of addressing **uncertainties** to recognize and minimize errors in monitoring

• Trade-offs must be identified and considered in monitoring decisions

• Modelling is a particularly useful tool because it allows **experimentation through simulation**

Acknowledgements

This research is funded by the FCT – Portugal (SFRH/BD/43186/2008) and by the European Commission under the HUNT project of the 7th Framework Programme for Research and Technological Development.

Imperial College London

